Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.984
1.
CNS Neurosci Ther ; 30(5): e14729, 2024 05.
Article En | MEDLINE | ID: mdl-38738958

BACKGROUND: Pituitary adenoma is one of the most common brain tumors. Most pituitary adenomas are benign and can be cured by surgery and/or medication. However, some pituitary adenomas show aggressive growth with a fast growth rate and are resistant to conventional treatments such as surgery, drug therapy, and radiation therapy. These tumors, referred to as refractory pituitary adenomas, often relapse or regrow in the early postoperative period. The tumor microenvironment (TME) has recently been identified as an important factor affecting the biological manifestations of tumors and acts as the main battlefield between the tumor and the host immune system. MAIN BODY: In this review, we focus on describing TME in pituitary adenomas and refractory pituitary adenomas. Research on the immune microenvironment of pituitary adenomas is currently focused on immune cells such as macrophages and lymphocytes, and extensive research and experimental verifications are still required regarding other components of the TME. In particular, studies are needed to determine the role of the TME in the specific biological behaviors of refractory pituitary adenomas, such as high invasion, fast recurrence rate, and high tolerance to traditional treatments and to identify the mechanisms involved. CONCLUSION: Overall, we summarize the similarities and differences between the TME of pituitary adenomas and refractory pituitary adenomas as well as the changes in the biological behavior of pituitary adenomas that may be caused by the microenvironment. These changes greatly affect the outcome of patients.


Adenoma , Pituitary Neoplasms , Tumor Microenvironment , Pituitary Neoplasms/therapy , Pituitary Neoplasms/pathology , Humans , Tumor Microenvironment/physiology , Tumor Microenvironment/immunology , Adenoma/therapy , Adenoma/pathology , Animals , Treatment Outcome
2.
Bull Math Biol ; 86(6): 64, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664343

We introduce in this paper substantial enhancements to a previously proposed hybrid multiscale cancer invasion modelling framework to better reflect the biological reality and dynamics of cancer. These model updates contribute to a more accurate representation of cancer dynamics, they provide deeper insights and enhance our predictive capabilities. Key updates include the integration of porous medium-like diffusion for the evolution of Epithelial-like Cancer Cells and other essential cellular constituents of the system, more realistic modelling of Epithelial-Mesenchymal Transition and Mesenchymal-Epithelial Transition models with the inclusion of Transforming Growth Factor beta within the tumour microenvironment, and the introduction of Compound Poisson Process in the Stochastic Differential Equations that describe the migration behaviour of the Mesenchymal-like Cancer Cells. Another innovative feature of the model is its extension into a multi-organ metastatic framework. This framework connects various organs through a circulatory network, enabling the study of how cancer cells spread to secondary sites.


Epithelial-Mesenchymal Transition , Mathematical Concepts , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms , Tumor Microenvironment , Humans , Neoplasm Metastasis/pathology , Tumor Microenvironment/physiology , Epithelial-Mesenchymal Transition/physiology , Neoplasms/pathology , Stochastic Processes , Cell Movement , Transforming Growth Factor beta/metabolism , Computer Simulation , Poisson Distribution
3.
Sci Rep ; 14(1): 8404, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600158

The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.


Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Animals , Mice , Wnt Signaling Pathway , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Stromal Cells/metabolism , Mesenchymal Stem Cells/metabolism , Drug Resistance , Bone Marrow Cells , Tumor Microenvironment/physiology
4.
Biomater Adv ; 160: 213860, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640876

Glioblastoma multiforme (GBM), a primary brain cancer, is one of the most aggressive forms of human cancer, with a very low patient survival rate. A characteristic feature of GBM is the diffuse infiltration of tumor cells into the surrounding brain extracellular matrix (ECM) that provide biophysical, topographical, and biochemical cues. In particular, ECM stiffness and composition is known to play a key role in controlling various GBM cell behaviors including proliferation, migration, invasion, as well as the stem-like state and response to chemotherapies. In this review, we discuss the mechanical characteristics of the GBM microenvironment at multiple length scales, and how biomaterial scaffolds such as polymeric hydrogels, and fibers, as well as microfluidic chip-based platforms have been employed as tissue mimetic models to study GBM mechanobiology. We also highlight how such tissue mimetic models can impact the field of GBM mechanobiology.


Brain Neoplasms , Extracellular Matrix , Glioblastoma , Glioblastoma/pathology , Humans , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Extracellular Matrix/metabolism , Hydrogels/chemistry , Tumor Microenvironment/physiology , Biocompatible Materials , Animals , Biomechanical Phenomena , Biophysics
5.
Int J Biol Sci ; 20(5): 1884-1904, 2024.
Article En | MEDLINE | ID: mdl-38481820

Due to the unique characteristics of breast cancer initiation sites and significant alterations in tumor metabolism, breast cancer cells rely on lipid metabolic reprogramming to effectively regulate metabolic programs during the disease progression cascade. This adaptation enables them to meet the energy demands required for proliferation, invasion, metastasis, and responses to signaling molecules in the breast cancer microenvironment. In this review, we comprehensively examined the distinctive features of lipid metabolic reprogramming in breast cancer and elucidated the underlying mechanisms driving aberrant behavior of tumor cells. Additionally, we emphasize the potential role and adaptive changes in lipid metabolism within the breast cancer microenvironment, while summarizing recent preclinical studies. Overall, precise control over lipid metabolism rewiring and understanding of plasticity within the breast cancer microenvironment hold promising implications for developing targeted treatment strategies against this disease. Therefore, interventions targeting the lipid metabolism in breast cancer may facilitate innovative advancements in clinical applications.


Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Lipid Metabolism/genetics , Neoplasms/metabolism , Metabolic Reprogramming , Tumor Microenvironment/physiology , Lipids
6.
Trends Pharmacol Sci ; 45(4): 304-318, 2024 Apr.
Article En | MEDLINE | ID: mdl-38453522

Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.


Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Treatment Outcome , RNA/therapeutic use , RNA, Messenger/genetics , Tumor Microenvironment/physiology
7.
J Leukoc Biol ; 115(4): 585-588, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38394343

Discoveries made in the past decades have brought out that, in addition to their classical primary defensive functions against infections, polymorphonuclear neutrophils play key effector roles not only in chronic inflammatory and immune-mediated diseases but also in cancer. In addition, depending on their differentiation/activation status and/or on the physiological or pathological microenvironment in which they reside, neutrophils have been shown to behave as highly plastic cells, able to acquire new phenotypes/functional states. All these features are well manifested in cancer and modulated during tumor progression. Herein, we discuss intriguing data by Lai Ng's group that have shed light on the origin and development of terminally differentiated, proangiogenic, tumor-associated neutrophils, facilitating tumor growth in a murine orthotopic model of pancreatic ductal adenocarcinoma. These findings help to progress toward the ambitious goal of selectively targeting only the skewed pathological neutrophil populations present within the tumor microenvironment.


Neutrophils , Pancreatic Neoplasms , Humans , Animals , Mice , Neutrophils/pathology , Tumor Microenvironment/physiology
8.
Cancer Res ; 84(4): 527-544, 2024 02 15.
Article En | MEDLINE | ID: mdl-38356443

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE: Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mesothelin , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment/physiology
9.
J Neurooncol ; 166(2): 213-229, 2024 Jan.
Article En | MEDLINE | ID: mdl-38180686

Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Brain/pathology , Models, Theoretical , Tumor Microenvironment/physiology , Cell Line, Tumor
10.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189036, 2024 01.
Article En | MEDLINE | ID: mdl-38042260

The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.


Ovarian Neoplasms , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/physiology , Clinical Relevance , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology
11.
ACS Appl Mater Interfaces ; 15(50): 58260-58273, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38051559

Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.


Brain Neoplasms , Glioblastoma , Humans , Microglia , Proteomics , Glioblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Brain Neoplasms/pathology , Cell Membrane/pathology , Tumor Microenvironment/physiology , Cell Line, Tumor
12.
Front Immunol ; 14: 1288273, 2023.
Article En | MEDLINE | ID: mdl-38124754

Cancer immunotherapy has developed rapidly in recent years and stands as one of the most promising techniques for combating cancer. To develop and optimize cancer immunotherapy, it is crucial to comprehend the interactions between immune cells and tumor cells in the tumor microenvironment (TME). The TME is complex, with the distribution and function of immune cells undergoing dynamic changes. There are several research techniques to study the TME, and intravital imaging emerges as a powerful tool for capturing the spatiotemporal dynamics, especially the movement behavior and the immune function of various immune cells in real physiological state. Intravital imaging has several advantages, such as high spatio-temporal resolution, multicolor, dynamic and 4D detection, making it an invaluable tool for visualizing the dynamic processes in the TME. This review summarizes the workflow for intravital imaging technology, multi-color labeling methods, optical imaging windows, methods of imaging data analysis and the latest research in visualizing the spatio-temporal dynamics and function of immune cells in the TME. It is essential to investigate the role played by immune cells in the tumor immune response through intravital imaging. The review deepens our understanding of the unique contribution of intravital imaging to improve the efficiency of cancer immunotherapy.


Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/physiology , Neoplasms/diagnostic imaging , Neoplasms/therapy , Diagnostic Imaging , Immunotherapy/methods , Intravital Microscopy/methods
13.
Biochem Pharmacol ; 218: 115907, 2023 12.
Article En | MEDLINE | ID: mdl-37931664

Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.


Neoplasms , Humans , Neoplasms/metabolism , Cholesterol/therapeutic use , Tumor Microenvironment/physiology
14.
PLoS Comput Biol ; 19(11): e1011607, 2023 Nov.
Article En | MEDLINE | ID: mdl-37939139

Ecological interactions are fundamental at the cellular scale, addressing the possibility of a description of cellular systems that uses language and principles of ecology. In this work, we use a minimal ecological approach that encompasses growth, adaptation and survival of cell populations to model cell metabolisms and competition under energetic constraints. As a proof-of-concept, we apply this general formulation to study the dynamics of the onset of a specific blood cancer-called Multiple Myeloma. We show that a minimal model describing antagonist cell populations competing for limited resources, as regulated by microenvironmental factors and internal cellular structures, reproduces patterns of Multiple Myeloma evolution, due to the uncontrolled proliferation of cancerous plasma cells within the bone marrow. The model is characterized by a class of regime shifts to more dissipative states for selectively advantaged malignant plasma cells, reflecting a breakdown of self-regulation in the bone marrow. The transition times obtained from the simulations range from years to decades consistently with clinical observations of survival times of patients. This irreversible dynamical behavior represents a possible description of the incurable nature of myelomas based on the ecological interactions between plasma cells and the microenvironment, embedded in a larger complex system. The use of ATP equivalent energy units in defining stocks and flows is a key to constructing an ecological model which reproduces the onset of myelomas as transitions between states of a system which reflects the energetics of plasma cells. This work provides a basis to construct more complex models representing myelomas, which can be compared with model ecosystems.


Ecosystem , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Bone Marrow/metabolism , Models, Theoretical , Tumor Microenvironment/physiology
15.
Am J Physiol Cell Physiol ; 325(6): C1516-C1531, 2023 12 01.
Article En | MEDLINE | ID: mdl-37927238

Head and neck cancer (HNC) encompasses a number of malignancies originating in the head and neck area. In patients with HNC, cervical lymph nodes constitute metastatic sites for cancer cells that escape primary tumors. The premetastatic niche (PMN) is a crucial concept in understanding metastatic disease. PMN refers to the microenvironment resulting mainly from primary tumor cells to foster metastatic tumor cell growth at a distant organ. Tumor microenvironment (TME) plays an important part in the pathogenesis of PMN. A significant prognostic factor is the close association between metastases of lymph nodes and organ dissemination in many different malignancies. The nodal premetastatic niche (NPMN) is a particular type of PMN located within the lymph nodes. NPMN formation is specifically important in HNC as regional lymph node metastasis commonly occurs. The formation happens when tumor cells create a supportive microenvironment within lymph nodes, facilitating their survival, growth, spread, and invasion. This complex mechanism involves multiple steps and cellular interactions between the primary tumor and tumor microenvironment. Several extracellular matrix (ECM) macromolecules, cytokines, and growth factors are implicated in this process. The aim of this article is to present the most recent data on the regulation of the lymph node PMN at molecular and cellular levels in HNC, as well as insights with respect to the relationship between primary tumor cells and the microenvironment of lymph nodes, and the formation of NPMN. We also critically discuss on potential targets for preventing or disrupting nodal metastases and identify potential biomarkers for predicting HNC outcomes.


Head and Neck Neoplasms , Lymphatic Vessels , Humans , Lymphatic Metastasis/pathology , Head and Neck Neoplasms/pathology , Lymph Nodes/pathology , Tumor Microenvironment/physiology
16.
Int J Biol Sci ; 19(15): 4915-4930, 2023.
Article En | MEDLINE | ID: mdl-37781517

Breast cancer is the most common cancer affecting women worldwide. Investigating metabolism in breast cancer may accelerate the exploitation of new therapeutic options for immunotherapies. Metabolic reprogramming can confer breast cancer cells (BCCs) with a survival advantage in the tumor microenvironment (TME) and metabolic alterations in breast cancer, and the corresponding metabolic byproducts can affect the function of tumor-associated macrophages (TAMs). Additionally, TAMs undergo metabolic reprogramming in response to signals present in the TME, which can affect their function and breast cancer progression. Here, we review the metabolic crosstalk between BCCs and TAMs in terms of glucose, lipids, amino acids, iron, and adenosine metabolism. Summaries of inhibitors that target metabolism-related processes in BCCs or TAMs within breast cancer have also served as valuable inspiration for novel therapeutic approaches in the fight against this disease. This review provides new perspectives on targeted anticancer therapies for breast cancer that combine immunity with metabolism.


Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Macrophages/metabolism , Neoplasms/metabolism , Immunotherapy , Breast/metabolism , Tumor Microenvironment/physiology
17.
J Exp Clin Cancer Res ; 42(1): 269, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37858201

BACKGROUND: Important roles of INHBB in various malignancies are increasingly identified. The underlying mechanisms in gastric cancer (GC) microenvironment are still greatly unexplored. METHODS: The clinical significance of INHBB and the correlation between INHBB and p-p65 in GC were assessed through analyzing publicly available databases and human paraffin embedded GC tissues. The biological crosstalk of INHBB between GC cells and fibroblasts was explored both in vitro and in vivo. RNA-seq analyses were performed to determine the mechanisms which regulating fibroblasts reprogramming. Luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to verify the binding relationship of p65 and INHBB in GC cells. RESULTS: Our study showed that INHBB level was significantly higher in GC, and that increased INHBB was associated with poor survival. INHBB positively regulates the proliferation, migration, and invasion of GC cells in vitro. Also, activin B promotes the occurrence of GC by reprogramming fibroblasts into cancer-associated fibroblasts (CAFs). The high expression of INHBB in GC cells activates the NF-κB pathway of normal gastric fibroblasts by secreting activin B, and promotes fibroblasts proliferation, migration, and invasion. In addition, activin B activates NF-κB pathway by controlling TRAF6 autoubiquitination to induce TAK1 phosphorylation in fibroblasts. Fibroblasts activated by activin B can induce the activation of p65 phosphorylation of GC cells by releasing pro-inflammatory factors IL-1ß. p65 can directly bind to the INHBB promoter and increase the INHBB transcription of GC cells, thus establishing a positive regulatory feedback loop to promote the progression of GC. CONCLUSIONS: GC cells p65/INHBB/activin B and fibroblasts p65/IL-1ß signal loop led to the formation of a whole tumor-promoting inflammatory microenvironment, which might be a promising therapeutic target for GC.


Activins , Fibroblasts , NF-kappa B , Stomach Neoplasms , Tumor Microenvironment , Humans , Cell Line, Tumor , Fibroblasts/metabolism , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment/physiology , Activins/metabolism
18.
Nat Rev Cancer ; 23(12): 825-841, 2023 Dec.
Article En | MEDLINE | ID: mdl-37884609

Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.


Neoplasms , Protons , Humans , Neoplasms/pathology , Hydrogen-Ion Concentration , Lactic Acid , Tumor Microenvironment/physiology
19.
Pathol Res Pract ; 251: 154846, 2023 Nov.
Article En | MEDLINE | ID: mdl-37837860

The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.


Cancer-Associated Fibroblasts , Neoplasms , Humans , Tumor Microenvironment/physiology , Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Immunotherapy , Signal Transduction
20.
Curr Opin Biotechnol ; 84: 103011, 2023 Dec.
Article En | MEDLINE | ID: mdl-37864905

Proline is a nonessential amino acid, and its metabolism has been implicated in numerous malignancies. Together with a direct role in regulating cancer cells' proliferation and survival, proline metabolism plays active roles in shaping the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) display high rates of proline biosynthesis to support the production of collagen for the extracellular matrix (ECM). Indeed, impaired proline metabolism in CAFs results in reduced collagen deposition and compromises the growth and metastatic spread of cancer. Moreover, the rate of proline metabolism regulates intracellular reactive oxygen species (ROS) levels, which influence the production and release of cytokines from cancer cells, contributing toward an immune-permissive TME. Hence, targeting proline metabolism is a promising anticancer strategy that could improve patients' outcome and response to immunotherapy.


Immune Evasion , Neoplasms , Humans , Neoplasms/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Proline/metabolism , Tumor Microenvironment/physiology
...